Результаты анализа Изотопного и элементного состава топлива никель-водородных реакторов

К.А. Алабин¹, С.Н. Андреев¹, А.Г. Пархомов²

Аннотация—Представлены результаты анализа изотопного и элементного состава топлива до и после работы в теплогенераторе Росси, а также в аналогичных реакторах. В результате работы реактора Росси (наработка 5800 МДж избыточного тепла) произошли сильные изменения как элементного, так и изотопного состава топлива. В топливе реактора АП2 (150 МДж избыточного тепла) произошло значительное возрастание содержания Cr, K, Si, Na, Mg, Ca, Ti, V, снизилось содержание Ni, Mn, Cl, Zn, Cu, Al; обнаружено небольшое возрастание соотношения 6 Li / 7 Li. На китайском реакторе (>13 МДж избыточного тепла) при исследовании топлива обнаружено небольшое снижение содержания ⁶Li. На реакторе GS3 (17 МДж избыточного тепла) изотопных изменений в литии и никеле не обнаружено.

После публикации отчета об испытании в Лугано высокотемпературного теплогенератора Андреа Росси [1], [2] появилась возможность изготовления аналогичных устройств. Предпринято более десятка попыток их создания [3]. В некоторых из них продемонстрировано выделение тепла, значительно превышающее затраченную электроэнергию. Но остается неясной природа этого удивительного эффекта. Зарегистрированное избыточное тепловыделение многократно превосходит возможности химических реакций и сопоставимо с энерговыделением при ядерных реакциях, хотя и не сопровождается губительной радиацией и радиоактивностью. Важнейшее значение для прояснения природы этого эффекта имеет исследование изменений атомного и изотопного состава топлива в процессе работы реакторов. Проведение таких анализов является довольно сложным и дорогостоящим делом, поэтому они были сделаны лишь для нескольких реакторов.

I. Методы анализа элементного и изотопного состава

Во всех реакторах, о которых идет речь в этой статье, в качестве топлива использована смесь Ni + LiAlH₄. Использованы следующие методы анализа:

1. Метод SEM-EDS. Сканирующий электронный микроскоп в сочетании с рентгеновским энергодисперсионным анализатором элементного состава в заданных точках поверхности.

¹ ИОФ РАН, Москва.

2. Метод LIBS. Лазерный атомно-эмиссионный. Лазерное испарение с анализом оптического спектра.

3. ToF-SIMS. Времяпролетная масс-спектрометрия вторичных ионов. Позволяет определять изотопный состав.

4. Метод ICP-MS. Масс-спектрометрия с индуктивно-связанной плазмой. Позволяет определять изотопный состав.

5. Метод ICP-AES атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой. Позволяет определять элементный состав.

Первые три метода дают информацию об элементах, присутствующих в поверхностном слое до глубины несколько нанометров. ICP-MS, ICP-AES являются методами, дающими средний изотопный состав исследуемого образца.

II. Анализ топлива высокотемпературного реактора А.Росси

Испытанный в Лугано реактор работал с 24 февраля до 29 марта 2014 г. при температуре 1280 – 1400 °C с избыточной мощностью до 2,3 кВт. Всего выработано 5800 МДж (1600 кВт-час) избыточного тепла [1], [2].

Анализ топлива методом SEM-EDS сделан в университете Högskolan Dalarna, Швеция. Исследование топлива *до* загрузки в реактор обнаружило гранулы трех сортов: с высоким содержанием Al (вероятно, кристаллы алюмогидрида лития LiAlH4), с высоким содержанием никеля (порошок никеля) и с высоким содержанием железа.

Исследование этим методом топлива *после* работы в реакторе обнаружило гранулы двух сортов: с высоким содержанием никеля и с высоким содержанием кислорода.

Таблица I Массовая доля Ni, Li, и Al в исходом и отработавшем топливе (%).

Элементы	Ni	Ni	Li	Al	Al
До загрузки	55.4	55.0	1.17	4.36	4.39
После рабо-	95.9	95.6	0.03	0.00	0.05
ты					

Анализ элементного состава топлива *до* и *после* работы в реакторе Росси методом ICP-AES сделан в университете Uppsala, Швеция (Таблица I).

 $^{^2}$ alexparh@mail.ru.

Основными анализируемыми элементами были Ni, Li и Al. Содержание Li и Al определялось по двум независимым эмиссионным линиям для предотвращения возможной систематической опшобки. Количественное измерение содержания C, H, O, N, He, Ar и F не может быть сделано использованным методом.

Кроме Ni, Li и Al, в *исходном топливе* обнаружена довольно высокая концентрация C, Ca, Cl, Fe, Mg, Mn. Заметное количество этих элементов в отработавшем топливе не обнаружено.

Исследование изотопного состава топлива сделано двумя методами. Анализ методом TOF-SIMS сделан в университете Högskolan Dalarna (Швеция). Анализ методом ICP-MS сделан в университете Uppsala (Швеция) - Таблица II.

Таблица II Изотопный состав исходного и отработавшего топлива реактора Росси (%), а также природное соотношение изотопов в этих элементах.

	Исходное	е топливо	Отраб	топливо	Природа
	ToF-SIMS	ICP-MS	ToF-	ICP-MS	
			SIMS		
⁶ Li	8,6	5,9	92,1	$57,\!5$	7,5
7 Li	91,4	94,1	7,9	42,5	92,5
58 Ni	67	65,9	$0,\!8$	0,3	68,1
60 Ni	26,3	27,6	$0,\!5$	0,3	26,2
61 Ni	1,9	1,3	0,0	0,0	1,8
⁶² Ni	3,9	4,2	98,7	99,3	$3,\!6$
⁶⁴ Ni	1		0		$0,\!9$

Результаты анализа изотопного состава позволяют сделать следующие выводы.

1. Соотношение изотопов лития и никеля в исходном топливе практически не отличается от природного.

2. В отработавшем топливе существенно возросло относительное содержание 6 Li и снизилось содержание 7 Li.

3. В отработавшем топливе очень сильно снизилось содержание всех изотопов никеля, кроме 62 Ni. Содержание этого изотопа возросло с 3,6% до 99%.

4. Анализ ToF-SIMS показал наличие протия, но не заметил присутствие дейтерия.

III. Реакторы АП

Реактор АП1, аналогичный теплогенератору Росси, проработал 20 декабря 2014 г. 90 минут с избыточной мощностью до 860 Вт [4]. Выработано около 3,2 МДж (0,9 кВт-час) избыточного тепла. Это в 500 раз меньше наработки реактора в Лугано, поэтому сильных изменений на ядерном уровне произойти не могло. Тем не менее, анализ методом LIBS обнаружил достоверное увеличение в топливе после работы в реакторе содержания Na, Si, K, Cr. Снизилось содержание Li и Al.

Намного продолжительнее (более четырех суток) работал реактор АП2 [5]. При температуре 1200 °С избыточная мощность достигала 800 Вт. Выработано 150 МДж (40 кВт-час) избыточного тепла. Анализы топлива до и после работы в реакторе сделаны несколькими методами в нескольких организациях.

Анализ элементного состава с использованием электронного сканирующего микроскопа сделан в ИОФ РАН и ВНИИЭФ (г. Саров).

На рис. 1 показан вид топлива в сканирующем электронном микроскопе. Исследования показали сильное различие результатов для разных мест отбора пробы. Тем не менее, в топливной смеси до загрузки в реактор уверенно различаются две фракции: серые кристаллы и белые гранулы. В серых кристаллах обнаружены в основном Al, O и Cl. Так как метод SEM-EDS не способен определять литий, очевидно, что серые кристаллы – это не вполне чистый алюмогидрид лития. Белые гранулы состоят из никеля с небольшой примесью железа, алюминия и кислорода.

В топливе после работы в реакторе видны белые оплавленные и серые шлаковидные структуры. Белые структуры содержат в основном никель с примесью Fe, Al, Cr, Mn, Si, O. Шлаковидные структуры состоят в основном из Al и O. Вероятно, это продукты разложения алюмогидрида лития.

Анализ элементного состава топлива до и после работы в реакторе АП2 с использованием лазерного атомно-эмиссионного спектрометра сделан в ИОНХ РАН (Таблица III).

Видно, что содержание К и Сг выросло в десятки раз. Многократно увеличилось содержание Si, Na, Mg, Ca, Ti, V. Снизилось содержание Al, Ni, Cl, Mn, Cu, Zn. Следует отметить, что этот метод анализа, как и анализ с применением сканирующего электронного микроскопа, дает информацию об атомном составе лишь на поверхности исследуемого вещества. Эти результаты вполне соответствуют данным, полученным при анализе топлива реактора АП1.

Анализ изотопного состава топлива до и после работы в реакторе АП2 методом ICP-MS сделан в ГеоХи РАН. Результаты этого анализа показаны на рис. 2 и в Таблице IV.

Видно, что после работы в реакторе снизилось общее содержание алюминия и лития, причем немного возросло соотношение 6 Li / 7 Li . Достоверных изменений изотопного состава Ni не обнаружено.

IV. РЕАКТОРЫ GLOWSTICK

Реакторы GlowStick созданы Аланом Голдуотером. в рамках проекта MFMP [3], [6].

Реактор GS2 работал 2-3 апреля 2015 при температуре около 1000°С. 5-6 мая была попытка повторного запуска. Признаков избыточного тепловыделения не обнаружено.

Реактор GS3 работал 28-30 мая 2015. Реактор проработал около 30 часов при средней избыточной мощности 160 Вт, выработав 4,8 кВт-час (17 МДж) избыточной энергии.

Анализы топлива до и после этих запусков сделаны в университете Миссури (США). Анализировалось

(a)

(b)

Рис. 1. Топливо в сканирующем электронном микроскопе (реактор АП2) до заправки в реактор (а) и после извлечения из реактора (b).

Рис. 2. Содержание изотопов лития, алюминия и никеля в топливе до и после работы в реакторе АП2.

Таблица III

Результаты анализа элементного состава топлива до и после работы в реакторе АП2, сделанного на лазерном спектрометре. Приведены отношения и разности содержания каждого элемента до и после работы реактора.

% атомные				
Элемент	До	После	После/до	После-
				до
Li		9,5861		
В	0.0343	0,0327	0,953	-0.002
С	3,8231	7,4318	1,944	3.609
Ο	35.0812	42,3785	1,208	7.297
F	0,005	0,01	2,000	0.005
Na	0,031	0,1476	4,761	0.117
Mg	0,0034	0,0192	5,647	0.016
Al	20,2859	17,0474	0,840	-3.239
Si	0,2505	2,1615	8,629	1.911
Р	0,0026	0,0037	1,423	0.001
S	0,0056	0,0076	1,357	0.002
Cl	0,1752	0,047	0,268	-0.128
Κ	0,0113	0,3572	31,611	0.346
Ca	0,01	0,0328	3,280	0.023
Ti	0,0009	0,0087	9,667	0.008
V	0,0009	0,0084	9,333	0.008
\mathbf{Cr}	0,0358	1,4396	40,212	1.404
Mn	3,6826	0,2936	0,080	-3.389
Fe	0,1375	0,1846	1,343	0,047
Co	0,0014	0,0011	0,786	0.000
Ni	36,4072	18,795	0,516	-17.612
Cu	0,0074	0,0043	0,581	-0.003
Zn	0,0073	0,0016	0,219	-0.006
Сумма	100,0	100.0		

Элемент	Ло	76 массовы После	е После/ло	После-
	—		//	до
Li		2.5769		
В	0.0105	0.0137	1,305	0.003
С	1,3046	3,4573	2,650	2,153
0	15.9477	26,2644	1,647	10.317
F	0.0027	0,0074	2,741	0.005
Na	0,0202	0.1315	6,510	0.111
Mg	0,0023	0.0181	7,870	0.016
Al	15,5446	17,8091	1,146	2.265
Si	0.1997	2,3494	11.765	2.150
Р	0,0023	0,0045	1.957	0.002
S	0.0051	0,0094	1,843	0.004
Cl	0.1765	0,0646	0,366	-0.112
Κ	0.0125	0,5411	43,288	0,529
Ca	0,0114	0,0509	4,465	0.040
Ti	0,0012	0.0162	13,500	0.015
V	0,0013	0,0166	12,769	0.015
\mathbf{Cr}	0,0528	2,9002	54,928	2.847
Mn	5,7473	0,6248	0,109	-5.123
Fe	0,2183	0,3994	1,830	0.181
Co	0,0023	0,0026	1,130	0.000
Ni	60,7095	42,7277	0,704	-17,982
Cu	0,0134	0,0105	0,784	-0.003
Zn	0,0135	0,004	0,296	-0.010
Сумма	100.0	100.0		

Таблица IV
Таблица 4. Относительное содержание изотопов
лития и никеля до и после работы в реакторе АП2.

	До	После	Природа
⁶ Li	7.4	7.9	7.5
$^{7}\mathrm{Li}$	92.6	92.1	92.5
58 Ni	64.0	65.0	68.3
60 Ni	26.4	27.1	26.1
61 Ni	1.2	1,2	1.13
⁶² Ni	4.0	4,1	3.59
64 Ni	4.4	2.6	0.91

.

	⁷ Li∕ ⁶ Li
LiAlH₄	12,52
LiAlH ₄	12,49
LiAlH ₄	12,45
LiAlH ₄	12,48
LiAlH ₄	12,46
sample 1	12,47
sample 1	12,45
sample 2	12,45
sample 2	12,47
sample 3	12,43
sample 3	12,48
Natural ratio	12,18

Lithium isotope ratios

/ ⁵⁸ Ni
1362
L357
L349
L354
L356
L352
361
L358
L360

Nickel isotope ratios

Most results are within 1 standard deviation of natural ratios. All results are within 2 standard deviations of natural ratios.

Рис. 3. Результаты анализа топлива методом ICP-MS до и после работы в реакторах GS2 и GS3.

Таблица V Соотношение изотопов NI и LI, определенное методом ICP-MS, для реактора Songsheng Jiang.

Isotope	Before		After experiment	
ratio	experiment	1	2	3
⁶⁰ Ni/ ⁵⁸ Ni	$0.3852{\pm}0.0005$	$0.3854{\pm}0.0005$	$0.3854{\pm}0.0005$	$0.3854{\pm}0.0005$
⁶¹ Ni/ ⁵⁸ Ni	$0.1673 {\pm} 0.00004$	$0.01671 {\pm} 0.00004$	$0.01671 {\pm} 0.00004$	$0.01670 {\pm} 0.00004$
$^{62}Ni/^{58}Ni$	$0.05340 {\pm} 0.00012$	$0.05342{\pm}0.00012$	$0.05343 {\pm} 0.00012$	$0.05342{\pm}0.00012$
${}^{64}{ m Ni}/{}^{58}{ m Ni}$	$0.01356{\pm}0.000006$	$0.01357 {\pm} 0.00006$	$0.01367{\pm}0.00006$	$0.01357 {\pm} 0.00006$
⁶ Li/ ⁷ Li	$0.0812{\pm}0.0009$	$0.0779 {\pm} 0.0008$	$0.0782{\pm}0.0008$	$0.0792{\pm}0.0009$

соотношение изотопов лития и никеля методом ICP-MS. Исследованы образцы Ni и LiAlH₄, из которых составлялись топливные смеси, а также 1) Топливная смесь до заправки в реактор; 2) Топливо, отработавшее в реакторе GS2 (без наработки избыточной энергии); 3) Топливо, отработавшее в реакторе GS3 (наработка избыточной энергии 17 МДж). Результаты исследований показаны на рис. 3.

Достоверных отличий от природного изотопного состава в литии и никеле не обнаружено ни в одном из проанализированных образцов.

V. Анализ изотопного состава топлива в китайском реакторе (Songsheng Jiang, Ni-H Research Group, China Institute of Atomic Energy, Beijing, China)

Эксперимент проходил 4-8 мая 2015 [3], [7]. Избыточная мощность более 600 Вт удерживалась на протяжении 6 часов. Точное определение величины избыточной мощности невозможно, так как температура в реакторе превысила предел измерений (1370 °C). Наблюдался участок самоподдерживающегося режима продолжительностью около 10 минут.

Изменение соотношения изотопов никеля не обнаружено. Содержание ⁶Li снизилось с 7,5% до 7,2% (см. Таблицу V).

VI. Выводы

В результате 32-суточой работы реактора Росси произошли сильные изменения изотопного состава лития и никеля. Кроме Ni, Li и Al, в исходном топливе обнаружены C, Ca, Cl, Fe, Mg, Mn, причем, заметное количество этих элементов в отработавшем топливе не обнаружено.

Наработка избыточной энергии в реакторе АП2 в 40 раз меньше, чем в реакторе Росси. Вероятно, с этим связана малозаметность изменений изотопного состава. Заметно лишь небольшое возрастание соотношения ⁶Li / ⁷Li. Произошло значительное возрастание содержания Cr, K, Si, Na, Mg, Ca, Ti, V. Снизилось содержание Ni, Mn, Cl, Zn, Cu, Al.

На китайском реакторе обнаружено небольшое *сни*жение содержания ⁶Li в отличие от возрастания, обнаруженного на реакторах Росси и АП2.

Наработка избыточной энергии на реакторе GS3 в сотни раз меньше, чем на реакторе Росси. Закономерно, что тщательный анализ изотопных изменений в литии и никеле не обнаружил.

Список литературы

- [1] G. Levi, E. Foschi, В. Höistad. R.Pettersson, L. H.Essén. Observation Tegnér, of abundant heat production from a reactor device and of isotopic changes http://www.sifferkoll.se/sifferkoll/wpthe fuel. in content/uploads/2014/10/LuganoReportSubmit.pdf.
- [2] А.Г. Пархомов. Отчет международной комиссии об испытании высокотемпературного теплогенератора Росси. ЖФНН, 2(6):57–61, 2014.
- [3] Пархомов А.Г. Никель-водородные реакторы, созданные после публикации отчета об эксперименте в Лугано. Презентация доклада на 22 Российской конференции по холодной трансмутации ядер и шаровой молнии. Дагомыс, Сочи, 27.9-4.10 2015 г. https://yadi.sk/i/JM5BH21QjijAB.
- [4] А.Г. Пархомов. Исследование аналога высокотемпературного теплогенератора Росси. ЖФНН, 3(7):68–72, 2015.
- [5] А.Г. Пархомов. Результаты испытаний нового варианта аналога высокотемпературного теплогенератора Росси. ЖФНН, 3(8):34–38, 2015.
- [6] http://www.quantumheat.org.
- [7] http://www.e-catworld.com/2015/09/10/isotopic-analysis-of-fuel-and-ash-after-72-hour-experiment-songsheng-jiang.