Калибровочные работы с трёхосным прибором PZ-3D-01

Журнал Формирующихся Направлений Науки номер 7(3), стр. 58-66, 2015 © Авторы, 2015 статья получена: 06.12.2014 статья принята к публикации: 14.02.2015 http://www.unconv-science.org/n7/shkatov/

В.Т. Шкатов ¹

Аннотация-В работе исследовалась возможность калибровки прибора PZ-3D-01, предназначенного для измерения и регистрации тонко-полевых взаимодействий (ТПВ) в ближней зоне, с использованием низко-скоростного внешнего вращения пробных тел. Датчиками ТПВ в указанном приборе являются пьезоэлектрические преобразователи ПЗ-18 диаметром 18 мм и полной толщиной 0,5 мм в 3Dкомпоновке. Описаны состояние проблемы, предыстория вопроса, общая постановка задачи, выбор технологии и геометрии воздействия, использованная основная и вспомогательная аппаратура, метолика проведения измерительных работ, а также полученные результаты. Подробно представлены технические и методологические трудности при проведении калибровочных работ с использованием весьма медленного внешнего вращения пробных тел, а также способы их преодоления. Основным источником систематической помехи явилось вращение лабораторной системы отсчёта вместе с вращением Земли вокруг собственной оси, в частности наличие ненулевого угла места. Для уменьшения влияния последнего фактора пришлось использовать измеритель в полярной (экваториальной) монтировке, соответствующей углу места 56,5 градусов северной широты. Получены предварительные значения калибровочных коэффициентов, как для специального внешнего вращения, так и для фонового, связанного с Землёй. В работе не учитывалось вращение Земли вокруг Солнца.

I. Введение

Исследование влияния относительного вращения Прибора и Объектной Среды представляется актуальным, особенно в свете существующего многообразия подходов к объяснению механизма тонко-полевых взаимодействий (ТПВ), наличие которых рядом учёных не отвергается.

В настоящее время подготовка и проведение калибровочных работ в отношении существующих ТПВ измерительных систем продвигаются неудовлетворительно. Вероятно, потому, что не вполне ясен механизм работы самих тонко-полевых взаимодействий. Последнее мешает выбору простого и понятного способа калибровки, а также источника "стандартного" поля, тарированного в системных единицах.

На этом непростом пути отмечается наличие значительных методических и приборных трудностей. Первые чаще всего связываются с психофизическим аспектом (влиянием оператора и других лиц на процесс измерения), вторые - с недостаточной чувствительностью к ТПВ серийной и несерийной аппаратуры, а также сильным влиянием на неё климатических и даже космических факторов.

В калибровочных работах с существующими измерителями таких полей естественный приоритет остаётся у способов и устройств, использующих относительное вращение Объектной среды и Прибора. Известно, что взаимное вращение – наиболее реализованный и простой вид движения в Природе.

II. Состояние проблемы

Насколько известно автору, первые подходы к метрологическому обеспечению (МО) экспериментов в области ТПВ были описаны в сборнике работ томских учёных Лунёва В.И., Окулова В.В., Царапкина Г.С., Бикбаевой З.Г., Хасанова О.Л., Луканина А.А., Двилиса Г.С. и др. под общей редакцией Лунёва В.И. [1]. В ней справедливо указано на основную трудность в реализации МО, связанную с недостаточной изученностью явления спин-торсионных (СТВ-ТПВ) взаимодействий. Предложены и исследованы два варианта реализации количественных измерений:

- 1. Через измерение ухода частоты кварцевых резонаторов от номинального значения.
- 2. Через измерение вариации естественного радиоактивного фона любым измерителем ионизирующего излучения.
- В этой связи кварцевые датчики предлагалось калибровать магнитным полем известной величины.
- В этой коллективной работе впервые отмечалась необходимость учёта влияния так называемых "прочих условий", под которыми подразумевалось всё измерительное пространство, включая оператора. В том числе - необходимость ориентирования оси симметрии калибруемого прибора вдоль направления на север.

Здесь же были представлены конкретные результаты работ по обнаружению воздействия ТПВ (СТВ у авторов) вращающегося гиромотора на показания сцинтилляционного детектора ионизирующего излучения, на кварцевый резонатор, а также фоторегистрирующую среду и процессы кристаллизации. В.И. Лунёвым при участии М.Д. Носкова для обработки результатов эксперимента по воздействию СТП вращающегося гиромотора на кристаллизацию в исходном 30% водном растворе соли КВг был использован метод

¹ Лаб. A-4126, Томск, v.shkatov@qmail.com.

"скейлинг-размерности". Принцип масштабной инвариантности с численным параметром Ds обычно применяется исследователями при анализе пространственных и временных фрактальных структур различных объектов.

В этом эксперименте было получено вполне отчётливое различие в Ds при разной ориентации оси вращения гиромотора относительно оси кюветы, из чего сделан предварительный вывод о вероятной фрактализации материи в кристаллизующихся системах под действием СТП гиромотора [2]. Метод интересен тем, что позволяет в наблюдаемом "хаосе" найти скрытый порядок и выйти на его численную характеристику.

Известны экспериментальные работы И.А. Мельника [3], [4], [5], [6], [7], связанные с изучением влияния вращений твёрдого тела и жидкости на параметры радиоактивного распада некоторых изотопов, в особенности на его статистику.

Автор данного текста также отметился рядом работ, например, [8], [9] по детектированию ТПВ объектов с использованием разных датчиков, в основном твердотельных, встраиваемых в специальные измерители ТПВ — торсимеры: TCM-021, TCM-030, SADAF-08, EGYPT-A1, AUREOLE-001 (мод.001М1 и 001М2), GRG-001 (GRG-010 и GRG-100).

Периодически им же поднимался вопрос о калибровке этих (и других) приборных средств.

III. Эксперимент 1

В работе 2002 года [10] автор впервые применил внешнее вращение физических тел с контролируемым пакетом угловых скоростей для пробной калибровки экспериментального измерителя ТПВ – прибора ТСМ-030 собственной разработки. В работе решались и другие важные калибровочные проблемы, в частности, выяснялся главный вопрос: что же является основным фактором, определяющим ТПВ-эффект в процессах калибровки и измерений. Предварительные результаты исследования [10] определённо указывают на то, что основным фактором воздействия, по крайней мере, в данной специфической работе, является не удельный момент импульса внешнего пробного тела, а чистая плотность вращения, т.е. угловая скорость вращающейся вместе с телом среды Физического Вакуума.

Некоторые методические подробности этой работы описаны в [11]. Одна из рабочих осей прибора ТСМ-030 устанавливалась вертикально. Внешнее соосное вращательное воздействие осуществлялось пробными телами, подвешиваемыми на торсионе длиной около 1 метра к реверсивному приводу постоянного тока. В цепь подвеса включался крестообразный элемент ТПВ-развязки. Тела вращения одинакового размера были изготовлены из разных материалов в диапазоне плотностей 0,02-8,7 г/см³ (пенопласт - латунь). Выяснилось, что результат воздействия слабо зависит от плотности материала пробного тела и его ориентировки относительно прибора. Выделен основной фактор воздействия

— угловая скорость вращения, размерность её [cek $^{-1}$]. Предложена (но пока не зарегистрирована) системная единица измерения ТП-ТПВ Torsi (Ts) из расчёта: 1 Ts = 0.1 рад/сек (СИ).

IV. Эксперимент 2

В 2010 году в [12] были описаны измерительные эксперименты с вращающимся диском диаметром 95 мм, установленным на валу реверсивного двигателя РД-09 с редуктором, обеспечивающим угловую скорость вращения 0,91 рад/сек. Диск засвечивался лазерным ТПВ-зондом от прибора GRG-001 с расстояния 5 - 5,5 метров.

Получен предел чувствительности этого измерителя в условиях эксперимента на уровне 0,01 рад/сек. Прибор GRG-001 на выходе давал совокупность коротких всплесков, частота и длительность которых была связана с характеристиками ТПВ данного объекта.

В дальнейшем в приборе был установлен внутренний интегратор для получения трендового характера выходной величины.

V. Продолжение экспериментов 1 и 2

В конце 2014 года автор решил вернуться к экспериментам с вращением внешнего тела в окрестности уже нового, трёхосного, измерителя PZ-3D-01, в дальнейшем Прибора.

Датчиками ТПВ в этой разработке являются пьезоэлектрические преобразователи на основе керамики. Идеология использования пьезоэлектрических преобразователей (ПЗП) в качестве датчиков тонких полей не вполне очевидна. Она базируется на представлениях о том, что имеющиеся в пьезоэлектрическом материале электрические дипольные моменты (как естественные, так и создаваемые при изготовлении), должны реагировать не только на деформацию от классических силовых нагрузок, но и от изгибных моментов, обусловленных локальными тонко-полевыми неоднородностями (ЛТПН). Реакцией на эти неоднородности является выработка неравновесного заряда, что сопровождается появлением на конструктивной ёмкости ПЗП электрического напряжения величиной в доли-единицы мВ. В этом варианте даже обычный звук служит помехой, которую надо учитывать.

В Приборе PZ-3D-01 в качестве датчиков применяется 3D-сборка из пьезоэлементов (PZ) диаметром 18 мм и толщиной вместе с латунной подложкой (мембраной) 0,5 мм. Тип PZ-элемента ПЗ-18. Сборка представляет собой 3-х осевую композицию из этих элементов по направлениям XYZ, где X — продольная ось, Y — поперечная ось в ширину, а Z — поперечная ось в глубину Прибора.

Все три РZ-элемента для уменьшения вибрационных помех установлены на демпфирующем каркасе чувствительным слоем наружу.

Электрические сигналы с PZ-элементов 3D-сборки усиливаются тремя предварительными усилителями на

микросхемах LM358N, коэффициент усиления которых фиксирован на уровне 30 Дб. Затем сигналы коммутируется микросхемой 590КН3 по схеме три линии в одну. Далее однолинейный сигнал усиливается нормирующим усилителем на AD620 (коэффициент передачи корректируется в пределах 9,54-23,5 Дб) и преобразуется в частоту микросхемой TC9400, на выходе которой получается число импульсов за период стробирования.

Сигнал в виде пакета импульсов поступает в программируемый комплект ARDUINO UNO R3 (производство Италия). Этот комплект выполняет в Приборе несколько функций: управление коммутатором каналов, подсчёт числа импульсов в пакете и оцифровка сигнала с синфазным его стробированием, управление двухстрочным матричным индикатором, математическая обработка и передача данных в ПК через USB-порт. Работа ARDUINO поддерживается программой пользователя "Регистратор PZDO".

Использование промежуточного преобразования напряжения в частоту даёт существенные преимущества в отношении шумоподавления, так как подсчёт общего числа импульсов (3-6 тысяч за период стробирования) аналогично интегрированию величины. А в случае короткой АЦП - выборки из сигнала постоянного тока такого эффекта не получается.

Следует отметить, что совокупность технических решений, связанная с применением в Приборе (и не только в этом) готовых, высокотехнологичных, блоков и узлов западных производителей, предложена и внедряется П.В. Шкатовым, г. Москва. Им же созданы и непрерывно совершенствуются программные продукты для экспериментальных измерителей тонких полей EGYPT-A1, EGYPT-B1, GRG-001, а теперь PZ-3D-01.

Указанное выше общее число импульсов за период стробирования (в данных экспериментах в основном Т=1000 мс) периодически передаётся в ПК и накапливается в текстовом файле с привязкой по таймеру ПК на момент начала серии. Файл сохраняется и в дальнейшем может быть использован в Ехсеl для дальнейшей обработки в виде столбца. При наличии нескольких серий в эксперименте получается ряд столбцов, а в целом прямоугольная матрица данных из столбцов т и строк п. Например, в некоторых экспериментах получалось 20 строк при 15-18 столбцах. А общее число отдельных событий за период стробирования, соответствующее одному числу в матрице, равно числу пересчитанных импульсов.

В результатах, предъявляемых читателю, обязательно использовалось дополнительное усреднение данных по столбцу, в итоге общее усреднение оказывается равным (3000...6000)*20. А далее с такими усреднёнными данными производилась дополнительная работа по вычитанию фоновых данных, усреднению повторов и т п

В качестве пробного вращающегося тела использовались два тонких диска: картонный диаметром 140 мм с приводом от ДПТ (N1) и металлический - 95 мм от жёсткого диска, с приводом от РД-09 (0,628 рад/сек

№2).

Сначала Прибор был ориентирован продольной осью X по вертикали. Измерения отклика на дифференциальное вращение: отклик на правое вращение минус отклик на левое вращение, с учётом контроля фона до первого вращения, между вращениями и после второго вращения, в течение 9-21 час томского времени с интервалами 2-3 часа дали странную циклограмму, построенную в виде фазового портрета, рис. 1.

В измерениях и их обработке использована новая методика фильтрации синфазной помехи от акустических шумов.

Как показано ниже в разделе "Контроль", она требует измерения реверсивных вращений пробного тела на фоне постоянного уровня акустических шумов и дифференциальной системы обработки сигналов. Глубина фильтрации при этом достигает 20 раз.

Планомерный учёт изменений фона также даёт вклад в увеличение достоверности измерений.

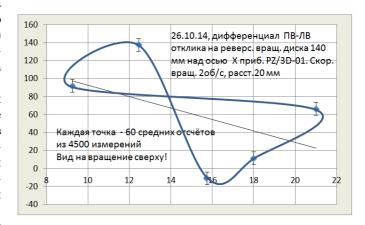


Рис. 1. Фазовый портрет дифференциальной реакции PZ-3D-01 на реверсивное и соосное вращение диска №1. Расстояние от плоскости диска до среза головки датчиков 20 мм, скорость вращения около 2-х об/сек.

Результат 1, представленный на рис. 1, обескураживает. Получается, что простой и монотонной калибровочной функции, а лучше коэффициента на все времена, нет. Повторяется старая недоработка с авторскими измерениями символов и букв [13], которые выполнялись ежедневно с утра, в течение 2-3 часов, т.е. компактно во времени.

Возможные решения. Понятно, что земное вращение остановить нельзя, но и большой необходимости в этом нет. Более того, это вращение можно использовать во благо, ниже будет показано каким образом.

Некоторые эффекты модуляции, подобные феномену рис. 1, можно уменьшить установкой главной оси ТПВ-приборов параллельно оси земного вращения, т.е. наклонив ось Прибора, например "Х", к северу на угол, равный широте места. Такие установки (монтировки), называемые полярными (экваториальными), используют астрономы для наблюдения и фотографирования небесных объектов. Только при этом дополнительно устанавливается система точного автоматического

гидирования (сопровождения) по выбранной опорной звезде [14].

А. Условия экспериментов

В нашем случае это достигалось монтированием Прибора на коротком фото-штативе с возможностью 3-х осевого поворота головки. Ножки штатива снабжались резиновыми амортизаторами для уменьшения влияния вибрации стола на 3D-сборку чувствительных датчиков.

Ориентация лаборатории по сторонам горизонта производилась с помощью магнитного компаса, точность по горизонту составила $\pm 1,5$ градуса (половина цены деления шкалы). Вертикальные углы по каждой из осей XYZ (для широты Томска $56,5\pm 0,5$ градуса) устанавливались по транспортиру с ценой деления 1 градус. Точность установки $\pm 0,5$ градуса.

Температура в помещении поддерживалась равной $22\pm0.5~^{\circ}\mathrm{C}$, давление в диапазоне $755\pm3~\mathrm{mm}$ Hg, влажность и освещённость не контролировались.

Питание Прибора +5В осуществлялось от ПК через разъём USB, через него же производился съём информации и управление. Потребляемый ток в режиме с использованием микроконтроллерной части не превышал 100 мA.

Число локальных измерений на точку не менее 3000*20 строк для каждой из осей. Быстродействие на один отсчёт 1 сек. Общая продолжительность работы по сеансу (без обработки измерений) 60 сек. Время "адаптации" Прибора к выбранному варианту установки до сеанса измерения не менее 1 суток.

В. Контрольные проверки

Ввиду того, что используемые датчики кроме реакции на ТПВ неплохо "слышат" обычный звук и вибрацию в диапазоне 1-1000 Гц, пришлось принимать соответствующие аппаратные и методические меры для уменьшения влияния этого фактора.

1. Аппаратные меры.

- 1.1. Амортизация прибора на нежёстком штативе путём использования дополнительных резиновых прокладок на его ножках.
- 1.2. Размещение на корпусе головки датчиков "шапки" из пористого материала с отверстиями напротив соответствующих 3-х осевых чувствительных элементов XYZ.
- 1.3. Измерение коэффициента ослабления по п.п.1.1 и 1.2 совокупно. Он оказался равным 30 раз или около -15 дБ в области нижних частот указанного диапазона (1-100 Γ ц). В верхней части спектра этот коэффициент приближается к -20...25 дБ.

2. Методические меры.

2.1. Так как подавление звуковой помехи техническими приёмами не всегда достаточно, то в системе калибровки и последующей обработки данных использовался стандартный приём по фильтрованию синфазной помехи на фоне противофазного сигнала — вычитание сумм

сигнала и помехи. При условии хорошей балансировки помехи в первой и второй суммах при вычитании действие помехи обнуляется, а действие сигнала складывается. Дифференциальный метод в нашем случае – правое вращение минус левое вращение (ПВ-ЛВ).

2.2. Балансировка уровня звуковых помех при прямом и реверсном вращении двигателя с редуктором проверялось путём отворота оси диска от оси Прибора на угол 90° и прогонов регистрации из 60 чисел в каждом случае, как для реверсного вращения, так и для фона. В прямом и обратном порядке следования: фон1-прав-фон2-лев-фон3-лев-фон4-прав-фон5. Расстояние двигателя от Прибора 2 метра. Небаланс оказался равным 3,58% или -14,5 дБ в пользу правого вращения. Вполне приемлемо.

Под сеансом везде понимается столбец данных, соответствующий одному включению Прибора на сканирование объекта, либо фона при установленном числе рабочих осей.

3. Особенности эксплуатации.

Работа по калибровке Прибора всегда проводилась в относительно спокойный период, как по внутренним в доме, так и по внешним шумам: забивание свай, ветер, дождь и т.п.

Результат 2. Применение полярной установки дало положительный результат, рис. 2. Глубокая модуляция по величине с перехлёстом и наклоном линейного тренда -63,7% в использованной координатной сетке сменилась на более плоскую форму с общим наклоном -4,9%, т.е. улучшение составило 13 раз. Это уже ближе к желанному "коэффициенту" пропорциональности между воздействием вращения и откликами Прибора по всему дневному диапазону.

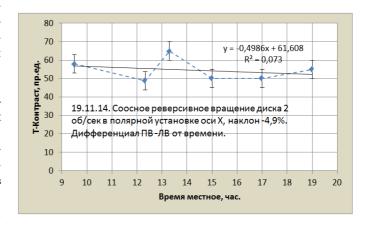


Рис. 2. Распределение дифференциала ПВ-ЛВ откликов PZ-3D-01 на соосное реверсивное вращение диска со скоростью 2 об/сек. Установка прибора полярная. Наклон тренда уменьшился более чем на порядок.

Вертикальные планки погрешностей на графиках расставлены, исходя из определяемой программой Ехсеl стандартной погрешности по данному столбцу, делённой на \sqrt{n} , где n - число отсчётов в столбце. Как правило, эта величина не превышает 3-5%.

С. Расширение задачи

Интерес может представлять самодиагностика прибором PZ-3D-01 вращения платформы (Земли), на которой он находится. Угловая скорость этого вращения $\omega=7,27\cdot 10^{-5}$ рад/сек. Для дальнейшего экспериментирования с вращениями это абсолютно необходимо.

Для простоты интерпретации вероятного результата необходимо поочерёдное нацеливание осей XYZ прибора в полярном направлении без каких-либо специальных накладываемых объектов, т.е. в фоновом режиме.

Такая работа проделана в ноябре — декабре 2014 в лаборатории A-4126 г, её результаты приведены на рис. 3-6.

При обработке результатов по самоопределению Прибора в пространстве вращения Земли были приняты меры по коррекции разного уровня величины от особенностей приборного фактора и падающего наклона этого уровня при длительной 8-10 часов эксплуатации Прибора в рамках одной задачи при активации всех трёх осей. В результате родился алгоритм взаимосвязи по осям: X1 = X - (Y+Z)/2, Y1 = Y - (X+Z)/2, Z1 = Z - (X+Y)/2 (далее эти X1, Y1 и Z1 используются при построении графиков на рис. 3-6) и приёмы контрсмещения и контрнаклона в обработке и представлении данных.

Рис. 3. Работа с ориентированной осью "X", направление других осей указано внутри рисунка. По горизонтали – местное время, по вертикали величина, вычисленная по определённому алгоритму.

Как и ожидалось, идея в целом работает. Прибор показал взаимодействие своих осей с вращающейся Землёй именно тогда, когда данная ось прибора была коллинеарна с её осью. Для вхождения в режим согласования требуется некоторое время от начала регистрации (запаздывание) в пределах 3 - 9 часов, что соответствует повороту платформы (Земли) всего на угол 45 - 135°.

Критерием "утвердительности" срабатывания режима "согласования" по отношению к рассматриваемой оси предлагается считать комплекс характерных особенностей в откликах всего набора X,Y,Z: преобладание по амплитуде, неизменная полярность по всему отрезку

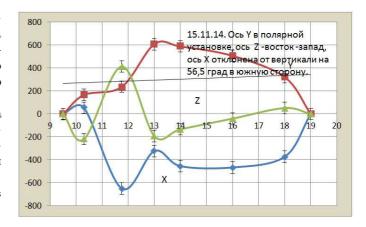


Рис. 4. Работа с ориентированной осью "Y", направление других осей указано внутри рисунка. По горизонтали – местное время, по вертикали величина, вычисленная по определённому алгоритму.

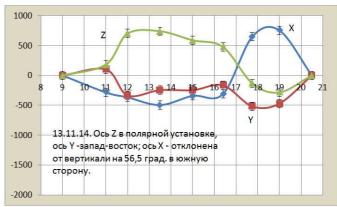


Рис. 5. Работа с ориентированной осью "Z", направление других осей указано внутри рисунка. По горизонтали – местное время, по вертикали величина, вычисленная по определённому алгоритму.

Рис. 6. Возврат к ориентированной оси "X", направление других осей указано внутри рисунка.

времени (около 12 часов), группировка отсчётов по дополняющим осям.

О чувствительности. Эквивалентная чувствительность Прибора в экспериментах по самоопределению в пространстве достигает $10^{-7}~{\rm c}^{-1}/{\rm eg}$. шкалы. Правда, получается это ценой увеличения длительности самоопределения до 9 часов (32400 сек) при $\omega=7,27\cdot10^{-5}~{\rm pag/cek}$ (Земля). Для сравнения, при калибровках внешними вращающимися телами, за счёт их более высокого темпа вращения, на том же Приборе PZ-3D-01 вполне достижимо получение результата за 10-20 сек при достаточной чувствительности.

Результаты по чувствительности в медленном и быстром вариантах измерений вполне сводимы друг к другу. Отношение интервалов накопления 32400/10 даёт 3240.

Если в медленном варианте имеем чувствительность порядка 10^{-7} , то в быстром нужно умножить эту величину на отношение интервалов, т.е. на 3240. В результате имеем $3,24\cdot 10^{-4}$. Реально в 7,5 раз хуже, но это нормально в грубых оценках.

Другое дело, что в экспериментах с вращениями проявляется нелинейность системы "при больших значениях параметра".

Иными словами, при больших скоростях наблюдается насыщение отклика Прибора.

Поэтому на практике иметь дело с простыми пропорциями, как в примере выше, в широком интервале ведущего параметра не вполне корректно.

Рис. 7. Запись сигнала Прибора от соосного левого вращения диска \mathbb{N}^2 2, противоположного направлению вращения Земли, в полярной установке. Скорость вращения 0,1 об/сек.

На рис. 7 приведена регистрация сигнала от левого вращения диска №2, в полярной его установке на расстоянии от Прибора 1,5 м. Скорость плавного вращения 0.1 ± 0.001 оборотов/сек или 0.628 ± 0.00628 рад/сек.

Видно, что на отрезке записи, соответствующем вращению, имеются повторяющиеся группы с периодом, близким к периоду вращения. Кроме этого, каждая группа характерна наличием сдвоенной структуры, повидимому, присущей конструкции диска №2. При анализе её выяснилось наличие двух винтов крепления диска к выходному валу редуктора.

Рис. 8. Запись сигнала Прибора от соосного правого вращения диска №2, совпадающего с направлением вращения Земли, в полярной установке. Скорость вращения 0,1 об/сек.

На рис. 8 показана запись правого вращения с участками покоя. Также имеются сдвоенные элементы и знакомый период их повторения. Здесь следует подчеркнуть, что правое вращение диска в полярной установке согласно с направлением вращения Земли.

На рис. 9 приведена зависимость изменений контролируемого фона на протяжении всего эксперимента.

Сами по себе эти изменения невелики (≤ 10% от величины эффекта), но интересно то, что левое вращение в основном искажает фоновую обстановку (участки 1-2 и 4-5), а правое вращение эту обстановку исправляет (участки 2-3 и 3-4). Диск при калибровке на "чувствительность" вращался реверсивно и параллельно оси вращения Земли.

Чувствительность Прибора PZ-3D-01 при калибровке реверсивным диском №2 в полярной установке обоих компонентов достигает $(2,42\pm0,10)\cdot10^{-3}$ с $^{-1}$ /ед. шкалы, что примерно в 4 раза превышает чувствительность GRG-001.

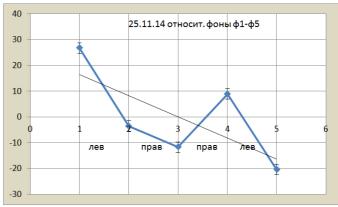


Рис. 9. Изменение относительного уровня фонов Φ 1- Φ 5 при проведении калибровки вращающимся диском №2. Видно, что левое вращение искажает фоновую обстановку, а правое вращение исправляет. Общий вклад изменения фона не превышает 10% от эффектов вращения.

D. Обработка

На рис. 10 показан вариант использования дисперсионного анализа (ДА) [7] для обработки числовых массивов, получаемых в экспериментах с вращением. Здесь использованы экспандерные свойства (ЭС) математической дисперсии (D), которая, по сути, есть квадрат усреднённого отклонения от математического среднего (М) массива данных. Для приведения D к нормальной "по размерности" величине с сохранением ЭС автор делит D на M, получая при этом приведённую дисперсию (ПД).

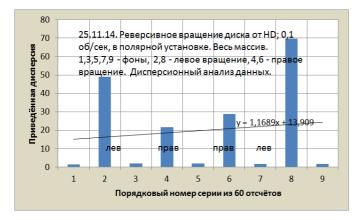


Рис. 10. Использование дисперсионного анализа (ДА) при обработке результатов измерения. На данном рисунке по вертикальной оси отложена приведённая дисперсия D(n)/m(n), где D(n) –дисперсия для ряда из n-чисел, а m(n) – математическое ожидание для того же ряда. Хорошо видно, что отклик ДА на ситуацию с реверсивным вращением чёткий, фоны для данного масштаба едва заметны.

Виден чёткий эффект применения ПД. Налицо большой динамический диапазон, в котором фоны 1,3,5,7,9 почти не видны.

Е. Электронный посредник

На рис. 11 применена подобная обработка результатов эксперимента с внешним вращением того же диска, но в гораздо более продвинутом варианте — с использованием промежуточного электронного изображения. Ранее в [11] уже использовался транспорт тонко-полевого фактора с объекта в измеритель GRG-001 через посредство лазерного луча — лазерно-торсионного зонда. Интересно проверить работоспособность оптического носителя в не лазерном варианте.

Изображение вращающегося диска №2 наблюдалось телекамерой КРС-400 B/W ССD через теодолит Т-30 с расстояния 5,5 м, далее сигнал с камеры подавался на чёрно-белый монитор ВК23В102. Изображение диска в покое и вращениях воздействовало на Прибор в полярной установке.

Из рисунка 11 видно, что соотношение сигнал/шум в этом варианте заметно уменьшилось (\sim в 6 раз). Но с использованием ДА результат виден отчётливо даже без приведённой дисперсии.

Порядок следования направлений вращения во всех экспериментах с диском N2 одинаковый: левое-правоеправое-левое.

В варианте с электронным изображением вращающегося диска вторая пара на рис. 11 выглядит перевёрнутой по порядку следования: много-мало-опять много-опять мало. Ожидалось, что будет: много-мало-мало-много. Похоже, что такой сбой порядка – не случайность, а скрытая и пока непонятная закономерность.

Подобный сбой порядка наблюдается и на рис 12, только в обратную сторону, вероятно, в связи с феноменом "зеркальности", когда в чередующихся экспериментах какие-то параметры меняются с двойным периодом их повторения.

Этот феномен входит в набор неудобных помех неизвестного происхождения, заставляющий думать на мистические темы. Он проявляется, например, при длительном измерении тонкой составляющей поля реального несимметричного объекта, когда периодически (через раз) изменяется знак его тонко-полевого "контраста", а также фонового окружения (в противофазе). Получается, что сам процесс измерения изменяет свойства тонкой оболочки объекта и его фоновой составляющей. Это поведение напоминает особенности взаимодействия объекта и измерителя в квантовой механике.

Рис. 11. Использование дисперсионного анализа (ДА) при обработке результатов измерения эффектов вращения через электронное изображение вращающегося диска №2. Расстояние от диска до объектива теодолита с телекамерой по прямой 5,5 м, от Прибора до чёрно-белого монитора в полярной установке 1,5 м. Здесь дисперсия не нормирована. Эффекты вращения гораздо слабее, но в такой обработке видны. Интересно, что до обеда (около 11ч) вторая группа из правого-левого вращений развернулась по отношению к первой группе левого-правого вращений.

На рис. 12 приведены результаты измерения эффекта реверсивного вращения диска №2 через электронного посредника, сделанные после обеда в этот же день. Интересен феномен обращения дифференциального знака отклика при переходе через полдень. При работе без посредника этот феномен не наблюдался.

VИ, наконец, на рис. 13 выложена зависимость "локальной" дисперсии D_{lokal} от номера выборки для эксперимента с электронным посредником, рис. 11.

Рис. 12. Использование дисперсионного анализа (ДА) при обработке результатов измерения эффектов вращения через электронное изображение вращающегося диска №2. Условия те же. Интересно, что после обеда (около 15ч) вторая группа из правоголевого вращений развернулась по отношению к первой группе левого-правого вращений. А в целом ситуация по откликам до обеда и после него проявляет "зеркальность". Диск вращался физически в вертикальной плоскости, а ось его изображения находилась в полярной установке.

Видны характерные всплески D_{lokal} на границах регистрации области вращения, окружённые не менее характерными провалами.

Рис. 13. Дисперсионный анализ гибридной серии из TUVстолбцов в электронном эксперименте для левого вращения (U), Т и V-столбцы без вращения. Анализ производился отрезками по 10 чисел, всего таких отрезков 18. Интересно, что вращение поз.6-12 проявляет себя на фронтах включения аппаратуры на регистрацию. Причём, всплески поз.6 и поз.12 окружены провалами (!), как будто аппаратура знает наперёд, что будет дальше.

На рис. 13 использовались три столбца по 60 чисел (каждый продолжительностью 60 сек, при темпе съёма информации 1 число/сек), соответственно первый и третий без вращения, а второй с левым вращением. Эти три столбца вошли в общий длинный гибридный столбец длиной 180 чисел (продолжительность 3 минуты), который поделён на 18 частей по 10 чисел в каждой. Для каждой части найдено значение дисперсии и по этим значениям построена гистограмма "текущей" дисперсии по всему гибридному ряду (из 18 точек). Для наглядности на эту гистограмму наложен плавный график. В заключение автор благодарит П.В. Шкатова за

активное участие в работах и их постоянное творческое сопровождение.

На рис. 14 приведена фотография Прибора PZ-3D-1 на фото-штативе Rekam RT-M42 в рабочем состоянии.

Рис. 14. Прибор PZ-3D-01 на коротком штативе.

VI. Выводы

- 1. Выяснено необходимое и достаточное условие для калибровки Прибора внешним вращением тела. Это учёт вращения Земли и направления её вращения.
- 2. Как следствие выполнена полярная (экваториальная) и соосная установка Прибора и вращаемого тела.
- 3. Как следствие правильной установки реальное обнаружение способности Прибора к самоопределению в пространстве вращения.
- 4. Проведена калибровка Прибора вращением тела в найденных условиях. Она оказалась равной $(2,42\pm0,10)\cdot10^{-3}~{\rm c}^{-1}/{\rm ед}$. Пока нет оснований для корректировки размерности этой величины и изменения её содержания.
- 5. В обработке результатов использован дисперсионный анализ (ДА) как непосредственно, так и с приведением к здравому смыслу.
- 6. Проверена возможность работ с вращением тел через электронного посредника. Получен положительный результат с понижением "контраста" всего в 6 раз.

Список литературы

- [1] Поисковые экспериментальные исследования в области спин-торсионных взаимодействий. Под ред. В.И.Лунёва. Сборник статей. Томск, 1995.
- [2] В.И. Лунёв и М.Д. Носков. Теоретико-экспериментальные исследования особенности влияния спин-торсионного поля на фрактальные объекты. Поисковые экспериментальные исследования в области спин-торсионных взаимодействий. Под общей редакцией В.И.Лунёва. Сборник статей. Томск -1995, стр. 98-106.

- [3] Мельник И.А. Экспериментальные исследования влияния вращающейся жидкости на интенсивность излучения радиоактивного распада. *Известия ВУЗов. Физика*, (10):56–59, 2003.
- [4] Мельник И.А. Экспериментальное обнаружение воздействия на статистическое распределение аппаратурного спектра гамма-излучения изотопов. Известия ВУЗов. Физика, (5):19–26, 2004.
- [5] Мельник И.А. Исследование воздействия электродвигателя на статистические флуктуации радиоактивного распада. Известия ВУЗов. Физика, (4):32–38, 2006.
- [6] Мельник И.А. Отклик радиоактивного распада на дистанционное воздействие вращающихся объектов. Избранные труды 6-ой Сибирской междисциплинарной конференции по математическим проблемам физики пространствавремени сложных систем. Новосибирск, 15-20 июля 2007 г. Новосибирск. Ин-т математики СО РАН, 2008, с. 191-2009.
- [7] Мельник И.А. Обнаружение корреляции скорости распада радиоактивных элементов в опытах с вращающейся жидкостью. Электронный эсурнал 'Квантовая магия', 5(3), 2008
- [8] Шкатов В.Т., Агапов Н.А., Лаптев Б.И., Сидоренко Г.И. Некоторые итоги и ближайшие перспективы работ по измерению тонко-полевой составляющей материальных объектов. В сб. трудов конференции "Биоэнергоинформационные технологии в производственной, социальной и духовной сферах БЭИТ-2005, т.1, 2005г". / Под редакцией Госькова П.И. Москва-Барнаул: Изд-во АлтГТУ, 2005, стр. 50-53.

- [9] Шкатов В.Т., Шкатов П.В. Современные возможности тонко-полевой диагностики объектов живой и неживой природы. В сб. трудов конференции "Торсионные поля и информационные взаимодействия 2009", Хоста, Сочи, 25-29 августа 2009г. / Под ред. В.А. Жигалова, стр. 108-123. Там же. Дополнительные разъяснения к использованию метода торсионного фазового портрета (ТФП) в тонко-полевой диагностике различных объектов, стр. 124-126.
- [10] Шкатов В.Т., Шкатов П.В. О метрологическом обеспечении торсиметрических работ. В сб. трудов конференции "Биоэнергетические и энергоинформационные технологии, БИЭТ-2002", т.2./ Под редакцией Госькова П.И. Барнаул: Изд-во АлтГТУ, 2002, стр. 54-64.
- [11] Шкатов В.Т., Шкатов П.В. Некоторые измерительные эффекты, связанные с физическим вращением пробного тела, обнаруженные при тестировании нового торсимера GRG-001. В сб. трудов конференции "Биоинформационные и энергоинформационные технологии развития человека БИЭТ-2010"./Под ред. Жданова Д.Н. Барнаул: ООО "Статика", 2010, стр. 19-26.
- [12] Шкатов В.Т. Измерения торсионного контраста плоского изображения. В сб. трудов конференции "Биоэнергоинформатика БИЭ-99, т.2, 1999 г"./ Под редакцией Госькова П.И. Барнаул: Изд-во АлтГТУ, 1999, стр. 15-22.
- [13] Серафимов В.В. Экваториал. Энциклопедический словарь Брокгауза и Ефрона в 86 томах – СПб, 1890-1907г.
- [14] Шеффе Г. Дисперсионный анализ, пер. с англ. М., 1963.